kumoai.trainer.ModelArchitecturePlan#
- class kumoai.trainer.ModelArchitecturePlan[source]#
- Configuration parameters that define how the Kumo graph neural network is architected. Please see the Kumo documentation for more information. - Variables:
- model – ( - list[GNNModelPlan | GraphTransformerModelPlan]) A list of models to use. (default:- [GNNModelPlan(...)]). Supported Task Types: All
- channels – ( - list[int]) Deprecated in favor of- channelsin- GNNModelPlanand- GraphTransformerModelPlan. A list of potential dimension of layers in the graph neural network model (default:- [64, 128, 256]). Supported Task Types: All
- num_pre_message_passing_layers – ( - list[int]) A list of potential number of multi-layer perceptron layers before message passing layers in the graph neural network model (default:- [0, 1, 2]). Supported Task Types: All
- num_post_message_passing_layers – ( - list[int]) A list of potential number of multi-layer perceptron layers after message passing layers in the graph neural network model (default:- [1, 2]). Supported Task Types: All
- aggregation – ( - list[list["sum" | "mean" | "min" | "max" | "std"]]) Deprecated in favor of- aggregationin- GNNModelPlan. A nested list of aggregation operators in the graph neural network aggregation process (default:- [ ["sum", "mean", "max"], ["sum", "mean", "min", "max", "std"]]). Supported Task Types: All
- activation – ( - list["relu" | "leaky_relu" | "elu" | "gelu"]) A list of activation functions to use during AutoML (default:- ["relu", "leaky_relu", "elu", "gelu"]). Supported Task Types: All
- normalization – ( - list[None | "layer_norm" | "batch_norm"]) The normalization layer to apply (default:- ["layer_norm"]). Supported Task Types: All
- module – ( - "ranking"|- "embedding") The link prediction module to use (default:- ["ranking"]). Supported Task Types: Link Prediction
- handle_new_target_entities – ( - bool) Whether to make link prediction models be able to handle predictions on new target entities at batch prediction time (default:- False). Supported Task Types: Link Prediction
- target_embedding_mode – ( - ["lookup" | "feature" | "shallow_feature" | fusion]) Specifies how target node embeddings are embedded (default:- ["lookup"]). Supported Task Types: Link Prediction
- output_embedding_dim – ( - [int]) The output embedding dimension for link prediction models (default:- [32]). Supported Task Types: Link Prediction
- ranking_embedding_loss_coeff – ( - [float]) The coefficient of the embedding loss applied to train ranking-based link prediction models link prediction models (default:- [0.0]). Supported Task Types: Temporal Link Prediction
- distance_measure – ( - ["dot_product" | "cosine"]) Specifies the distance measure between node embeddings to use in the final link prediction calculation (default:- ["dot_product"]). Supported Task Types: Link Prediction
- use_seq_id – ( - [bool]) Specifies whether to use postional encodings of the sequence order of facts as an additional model feature (default:- [False]). Supported Task Types: All
- prediction_time_encodings – ( - [bool]) Specifies whether to encode the absolute prediction time as an additional model feature (default:- [False]). Supported Task Types: Temporal Node Prediction
- past_encoder – ( - ["decomposed" | "normalized" | "mlp" | "transformer"]) Specifies how to encode auto-regressive labels if present (default:- ["decomposed"]). Supported Task Types: Temporal Regression
- handle_new_entities – ( - bool) Whether to make forecasting models transductive by learning entity-specific heads. This can improve performance in case entities stay static over time, but will decrease performance on new entities arising during batch prediction time (default:- True). Supported Task Types: Forecasting