kumoai.trainer.ModelArchitecturePlan#
- class kumoai.trainer.ModelArchitecturePlan[source]#
Configuration parameters that define how the Kumo graph neural network is architected. Please see the Kumo documentation for more information.
- Variables:
channels – (
list[int]
) A list of potential dimension of layers in the Graph Neural Network model (default:[64, 128, 256]
). Supported Task Types: Allnum_pre_message_passing_layers – (
list[int]
) A list of potential number of multi-layer perceptron layers before message passing layers in the Graph Neural Network model (default:[0, 1, 2]
). Supported Task Types: Allnum_pre_message_passing_layers – (
list[int]
) A list of potential number of multi-layer perceptron layers after message passing layers in the Graph Neural Network model (default:[1, 2]
). Supported Task Types: Allaggregation – (
list[list["sum" | "mean" | "min" | "max" | "std"]]
) A nested list of aggregation operators in the Graph Neural Network aggregation process (default:[ ["sum", "mean", "max"], ["sum", "mean", "min", "max", "std"]]
). Supported Task Types: Allactivation – (
list["relu" | "leaky_relu" | "elu" | "gelu"]
) A list of activation functions to use during AutoML (default:["relu", "leaky_relu", "elu", "gelu"]
). Supported Task Types: Allnormalization – (
list[None | "layer_norm" | "batch_norm"]
) The normalization layer to apply (default:["layer_norm"]
). Supported Task Types: Allmodule – (
"ranking"
|"embedding"
) The link prediction module to use (default:["ranking"]
). Supported Task Types: Link Predictionhandle_new_target_entities – (
bool
) Whether to make link prediction models be able to handle predictions on new target entities at batch prediction time (default:False
). Supported Task Types: Link Predictiontarget_embedding_mode – (
["lookup" | "feature" | "shallow_feature" | fusion]
) Specifies how target node embeddings are embedded (default:["lookup"]
). Supported Task Types: Link Predictionoutput_embedding_dim – (
[int]
) The output embedding dimension for link prediction models (default:[32]
). Supported Task Types: Link Predictionranking_embedding_loss_coeff – (
[float]
) The coefficient of the embedding loss applied to train ranking-based link prediction models link prediction models (default:[0.0]
). Supported Task Types: Temporal Link Predictiondistance_measure – (
["dot_product" | "cosine"]
) Specifies the distance measure between node embeddings to use in the final link prediction calculation (default:["dot_product"]
). Supported Task Types: Link Predictionuse_seq_id – (
[bool]
) Specifies whether to use postional encodings of the sequence order of facts as an additional model feature (default:[False]
). Supported Task Types: Allprediction_time_encodings – (
[bool]
) Specifies whether to encode the absolute prediction time as an additional model feature (default:[False]
). Supported Task Types: Temporal Node Predictionpast_encoder – (
["decomposed" | "normalized" | "mlp" | "transformer"]
) Specifies how to encode auto-regressive labels if present (default:["decomposed"]
). Supported Task Types: Temporal Regressionhandle_new_entities – (
bool
) Whether to make forecasting models transductive by learning entity-specific heads. This can improve performance in case entities stay static over time, but will decrease performance on new entities arising during batch prediction time (default:True
). Supported Task Types: Forecasting