Source code for kumoai.experimental.rfm.rfm

import json
import math
import time
import warnings
from collections import defaultdict
from collections.abc import Generator, Iterator
from contextlib import contextmanager
from dataclasses import dataclass, replace
from typing import Any, Literal, overload

import pandas as pd
from kumoapi.model_plan import RunMode
from kumoapi.pquery import QueryType, ValidatedPredictiveQuery
from kumoapi.pquery.AST import (
    Aggregation,
    Column,
    Condition,
    Join,
    LogicalOperation,
)
from kumoapi.rfm import Context
from kumoapi.rfm import Explanation as ExplanationConfig
from kumoapi.rfm import (
    RFMEvaluateRequest,
    RFMParseQueryRequest,
    RFMPredictRequest,
)
from kumoapi.task import TaskType
from kumoapi.typing import AggregationType, Stype
from rich.console import Console
from rich.markdown import Markdown

from kumoai import in_notebook
from kumoai.client.rfm import RFMAPI
from kumoai.exceptions import HTTPException
from kumoai.experimental.rfm import Graph, TaskTable
from kumoai.experimental.rfm.base import DataBackend, Sampler
from kumoai.mixin import CastMixin
from kumoai.utils import ProgressLogger, display

_RANDOM_SEED = 42

_MAX_PRED_SIZE: dict[TaskType, int] = defaultdict(lambda: 1_000)
_MAX_PRED_SIZE[TaskType.TEMPORAL_LINK_PREDICTION] = 200

_MAX_TEST_SIZE: dict[TaskType, int] = defaultdict(lambda: 2_000)
_MAX_TEST_SIZE[TaskType.TEMPORAL_LINK_PREDICTION] = 400

_MAX_CONTEXT_SIZE = {
    RunMode.DEBUG: 100,
    RunMode.FAST: 1_000,
    RunMode.NORMAL: 5_000,
    RunMode.BEST: 10_000,
}

_DEFAULT_NUM_NEIGHBORS = {
    RunMode.DEBUG: [16, 16, 4, 4, 1, 1],
    RunMode.FAST: [32, 32, 8, 8, 4, 4],
    RunMode.NORMAL: [64, 64, 8, 8, 4, 4],
    RunMode.BEST: [64, 64, 8, 8, 4, 4],
}

_MAX_SIZE = 30 * 1024 * 1024
_SIZE_LIMIT_MSG = ("Context size exceeds the 30MB limit. {stats}\nPlease "
                   "reduce either the number of tables in the graph, their "
                   "number of columns (e.g., large text columns), "
                   "neighborhood configuration, or the run mode. If none of "
                   "this is possible, please create a feature request at "
                   "'https://github.com/kumo-ai/kumo-rfm' if you must go "
                   "beyond this for your use-case.")


@dataclass(repr=False)
class ExplainConfig(CastMixin):
    """Configuration for explainability.

    Args:
        skip_summary: Whether to skip generating a human-readable summary of
            the explanation.
    """
    skip_summary: bool = False


@dataclass(repr=False)
class Explanation:
    prediction: pd.DataFrame
    summary: str
    details: ExplanationConfig

    @overload
    def __getitem__(self, index: Literal[0]) -> pd.DataFrame:
        pass

    @overload
    def __getitem__(self, index: Literal[1]) -> str:
        pass

    def __getitem__(self, index: int) -> pd.DataFrame | str:
        if index == 0:
            return self.prediction
        if index == 1:
            return self.summary
        raise IndexError("Index out of range")

    def __iter__(self) -> Iterator[pd.DataFrame | str]:
        return iter((self.prediction, self.summary))

    def __repr__(self) -> str:
        return str((self.prediction, self.summary))

    def __str__(self) -> str:
        console = Console(soft_wrap=True)
        with console.capture() as cap:
            console.print(display.to_rich_table(self.prediction))
            console.print(Markdown(self.summary))
        return cap.get()[:-1]

    def print(self) -> None:
        r"""Prints the explanation."""
        if in_notebook():
            display.dataframe(self.prediction)
            display.message(self.summary)
        else:
            print(self)

    def _ipython_display_(self) -> None:
        self.print()


[docs] class KumoRFM: r"""The Kumo Relational Foundation model (RFM) from the `KumoRFM: A Foundation Model for In-Context Learning on Relational Data <https://kumo.ai/research/kumo_relational_foundation_model.pdf>`_ paper. :class:`KumoRFM` is a foundation model to generate predictions for any relational dataset without training. The model is pre-trained and the class provides an interface to query the model from a :class:`Graph` object. .. code-block:: python from kumoai.experimental.rfm import Graph, KumoRFM df_users = pd.DataFrame(...) df_items = pd.DataFrame(...) df_orders = pd.DataFrame(...) graph = Graph.from_data({ 'users': df_users, 'items': df_items, 'orders': df_orders, }) rfm = KumoRFM(graph) query = ("PREDICT COUNT(orders.*, 0, 30, days)>0 " "FOR users.user_id=1") result = rfm.predict(query) print(result) # user_id COUNT(transactions.*, 0, 30, days) > 0 # 1 0.85 Args: graph: The graph. verbose: Whether to print verbose output. optimize: If set to ``True``, will optimize the underlying data backend for optimal querying. For example, for transactional database backends, will create any missing indices. Requires write-access to the data backend. """
[docs] def __init__( self, graph: Graph, verbose: bool | ProgressLogger = True, optimize: bool = False, ) -> None: graph = graph.validate() self._graph_def = graph._to_api_graph_definition() if graph.backend == DataBackend.LOCAL: from kumoai.experimental.rfm.backend.local import LocalSampler self._sampler: Sampler = LocalSampler(graph, verbose) elif graph.backend == DataBackend.SQLITE: from kumoai.experimental.rfm.backend.sqlite import SQLiteSampler self._sampler = SQLiteSampler(graph, verbose, optimize) elif graph.backend == DataBackend.SNOWFLAKE: from kumoai.experimental.rfm.backend.snow import SnowSampler self._sampler = SnowSampler(graph, verbose) else: raise NotImplementedError self._client: RFMAPI | None = None self._batch_size: int | Literal['max'] | None = None self._num_retries: int = 0
@property def _api_client(self) -> RFMAPI: if self._client is not None: return self._client from kumoai.experimental.rfm import global_state self._client = RFMAPI(global_state.client) return self._client def __repr__(self) -> str: return f'{self.__class__.__name__}()'
[docs] @contextmanager def retry( self, num_retries: int = 1, ) -> Generator[None, None, None]: """Context manager to retry failed queries due to unexpected server issues. .. code-block:: python with model.retry(num_retries=1): df = model.predict(query, indices=...) Args: num_retries: The maximum number of retries. """ if num_retries < 0: raise ValueError(f"'num_retries' must be greater than or equal to " f"zero (got {num_retries})") self._num_retries = num_retries yield self._num_retries = 0
[docs] @contextmanager def batch_mode( self, batch_size: int | Literal['max'] = 'max', num_retries: int = 1, ) -> Generator[None, None, None]: """Context manager to predict in batches. .. code-block:: python with model.batch_mode(batch_size='max', num_retries=1): df = model.predict(query, indices=...) Args: batch_size: The batch size. If set to ``"max"``, will use the maximum applicable batch size for the given task. num_retries: The maximum number of retries for failed queries due to unexpected server issues. """ if batch_size != 'max' and batch_size <= 0: raise ValueError(f"'batch_size' must be greater than zero " f"(got {batch_size})") self._batch_size = batch_size with self.retry(self._num_retries or num_retries): yield self._batch_size = None
@overload def predict( self, query: str, indices: list[str] | list[float] | list[int] | None = None, *, explain: Literal[False] = False, anchor_time: pd.Timestamp | Literal['entity'] | None = None, context_anchor_time: pd.Timestamp | None = None, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, max_pq_iterations: int = 10, random_seed: int | None = _RANDOM_SEED, verbose: bool | ProgressLogger = True, use_prediction_time: bool = False, ) -> pd.DataFrame: pass @overload def predict( self, query: str, indices: list[str] | list[float] | list[int] | None = None, *, explain: Literal[True] | ExplainConfig | dict[str, Any], anchor_time: pd.Timestamp | Literal['entity'] | None = None, context_anchor_time: pd.Timestamp | None = None, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, max_pq_iterations: int = 10, random_seed: int | None = _RANDOM_SEED, verbose: bool | ProgressLogger = True, use_prediction_time: bool = False, ) -> Explanation: pass @overload def predict( self, query: str, indices: list[str] | list[float] | list[int] | None = None, *, explain: bool | ExplainConfig | dict[str, Any] = False, anchor_time: pd.Timestamp | Literal['entity'] | None = None, context_anchor_time: pd.Timestamp | None = None, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, max_pq_iterations: int = 10, random_seed: int | None = _RANDOM_SEED, verbose: bool | ProgressLogger = True, use_prediction_time: bool = False, ) -> pd.DataFrame | Explanation: pass
[docs] def predict( self, query: str, indices: list[str] | list[float] | list[int] | None = None, *, explain: bool | ExplainConfig | dict[str, Any] = False, anchor_time: pd.Timestamp | Literal['entity'] | None = None, context_anchor_time: pd.Timestamp | None = None, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, max_pq_iterations: int = 10, random_seed: int | None = _RANDOM_SEED, verbose: bool | ProgressLogger = True, use_prediction_time: bool = False, ) -> pd.DataFrame | Explanation: """Returns predictions for a predictive query. Args: query: The predictive query. indices: The entity primary keys to predict for. Will override the indices given as part of the predictive query. Predictions will be generated for all indices, independent of whether they fulfill entity filter constraints. explain: Configuration for explainability. If set to ``True``, will additionally explain the prediction. Passing in an :class:`ExplainConfig` instance provides control over which parts of explanation are generated. Explainability is currently only supported for single entity predictions with ``run_mode="FAST"``. anchor_time: The anchor timestamp for the prediction. If set to ``None``, will use the maximum timestamp in the data. If set to ``"entity"``, will use the timestamp of the entity. context_anchor_time: The maximum anchor timestamp for context examples. If set to ``None``, ``anchor_time`` will determine the anchor time for context examples. run_mode: The :class:`RunMode` for the query. num_neighbors: The number of neighbors to sample for each hop. If specified, the ``num_hops`` option will be ignored. num_hops: The number of hops to sample when generating the context. max_pq_iterations: The maximum number of iterations to perform to collect valid labels. It is advised to increase the number of iterations in case the predictive query has strict entity filters, in which case, :class:`KumoRFM` needs to sample more entities to find valid labels. random_seed: A manual seed for generating pseudo-random numbers. verbose: Whether to print verbose output. use_prediction_time: Whether to use the anchor timestamp as an additional feature during prediction. This is typically beneficial for time series forecasting tasks. Returns: The predictions as a :class:`pandas.DataFrame`. If ``explain`` is provided, returns an :class:`Explanation` object containing the prediction, summary, and details. """ query_def = self._parse_query(query) if indices is None: if query_def.rfm_entity_ids is None: raise ValueError("Cannot find entities to predict for. Please " "pass them via `predict(query, indices=...)`") indices = query_def.get_rfm_entity_id_list() query_def = replace( query_def, for_each='FOR EACH', rfm_entity_ids=None, ) if not isinstance(verbose, ProgressLogger): query_repr = query_def.to_string(rich=True, exclude_predict=True) if explain is not False: msg = f'[bold]EXPLAIN[/bold] {query_repr}' else: msg = f'[bold]PREDICT[/bold] {query_repr}' verbose = ProgressLogger.default(msg=msg, verbose=verbose) with verbose as logger: task_table = self._get_task_table( query=query_def, indices=indices, anchor_time=anchor_time, context_anchor_time=context_anchor_time, run_mode=run_mode, max_pq_iterations=max_pq_iterations, random_seed=random_seed, logger=logger, ) task_table._query = query_def.to_string() return self.predict_task( task_table, explain=explain, run_mode=run_mode, num_neighbors=num_neighbors, num_hops=num_hops, verbose=verbose, exclude_cols_dict=query_def.get_exclude_cols_dict(), use_prediction_time=use_prediction_time, top_k=query_def.top_k, )
@overload def predict_task( self, task: TaskTable, *, explain: Literal[False] = False, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, verbose: bool | ProgressLogger = True, exclude_cols_dict: dict[str, list[str]] | None = None, use_prediction_time: bool = False, top_k: int | None = None, ) -> pd.DataFrame: pass @overload def predict_task( self, task: TaskTable, *, explain: Literal[True] | ExplainConfig | dict[str, Any], run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, verbose: bool | ProgressLogger = True, exclude_cols_dict: dict[str, list[str]] | None = None, use_prediction_time: bool = False, top_k: int | None = None, ) -> Explanation: pass @overload def predict_task( self, task: TaskTable, *, explain: bool | ExplainConfig | dict[str, Any] = False, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, verbose: bool | ProgressLogger = True, exclude_cols_dict: dict[str, list[str]] | None = None, use_prediction_time: bool = False, top_k: int | None = None, ) -> pd.DataFrame | Explanation: pass
[docs] def predict_task( self, task: TaskTable, *, explain: bool | ExplainConfig | dict[str, Any] = False, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, verbose: bool | ProgressLogger = True, exclude_cols_dict: dict[str, list[str]] | None = None, use_prediction_time: bool = False, top_k: int | None = None, ) -> pd.DataFrame | Explanation: """Returns predictions for a custom task specification. Args: task: The custom :class:`TaskTable`. explain: Configuration for explainability. If set to ``True``, will additionally explain the prediction. Passing in an :class:`ExplainConfig` instance provides control over which parts of explanation are generated. Explainability is currently only supported for single entity predictions with ``run_mode="FAST"``. run_mode: The :class:`RunMode` for the query. num_neighbors: The number of neighbors to sample for each hop. If specified, the ``num_hops`` option will be ignored. num_hops: The number of hops to sample when generating the context. verbose: Whether to print verbose output. exclude_cols_dict: Any column in any table to exclude from the model input. use_prediction_time: Whether to use the anchor timestamp as an additional feature during prediction. This is typically beneficial for time series forecasting tasks. top_k: The number of predictions to return per entity. Returns: The predictions as a :class:`pandas.DataFrame`. If ``explain`` is provided, returns an :class:`Explanation` object containing the prediction, summary, and details. """ if num_hops != 2 and num_neighbors is not None: warnings.warn(f"Received custom 'num_neighbors' option; ignoring " f"custom 'num_hops={num_hops}' option") if num_neighbors is None: key = RunMode.FAST if task.task_type.is_link_pred else run_mode num_neighbors = _DEFAULT_NUM_NEIGHBORS[key][:num_hops] explain_config: ExplainConfig | None = None if explain is True: explain_config = ExplainConfig() elif explain is not False: explain_config = ExplainConfig._cast(explain) if explain_config is not None and run_mode in { RunMode.NORMAL, RunMode.BEST }: warnings.warn(f"Explainability is currently only supported for " f"run mode 'FAST' (got '{run_mode}'). Provided run " f"mode has been reset. Please lower the run mode to " f"suppress this warning.") run_mode = RunMode.FAST if explain_config is not None and task.num_prediction_examples > 1: raise ValueError(f"Cannot explain predictions for more than a " f"single entity " f"(got {task.num_prediction_examples:,})") if not isinstance(verbose, ProgressLogger): if task.task_type == TaskType.BINARY_CLASSIFICATION: task_type_repr = 'binary classification' elif task.task_type == TaskType.MULTICLASS_CLASSIFICATION: task_type_repr = 'multi-class classification' elif task.task_type == TaskType.REGRESSION: task_type_repr = 'regression' elif task.task_type == TaskType.TEMPORAL_LINK_PREDICTION: task_type_repr = 'link prediction' else: task_type_repr = str(task.task_type) if explain_config is not None: msg = f"Explaining {task_type_repr} task" else: msg = f"Predicting {task_type_repr} task" verbose = ProgressLogger.default(msg=msg, verbose=verbose) with verbose as logger: if task.num_context_examples > _MAX_CONTEXT_SIZE[run_mode]: logger.log(f"Sub-sampled {_MAX_CONTEXT_SIZE[run_mode]:,} " f"out of {task.num_context_examples:,} in-context " f"examples") task = task.narrow_context(0, _MAX_CONTEXT_SIZE[run_mode]) if self._batch_size is None: batch_size = task.num_prediction_examples elif self._batch_size == 'max': batch_size = _MAX_PRED_SIZE[task.task_type] else: batch_size = self._batch_size if batch_size > _MAX_PRED_SIZE[task.task_type]: raise ValueError(f"Cannot predict for more than " f"{_MAX_PRED_SIZE[task.task_type]:,} " f"entities at once (got {batch_size:,}). Use " f"`KumoRFM.batch_mode` to process entities " f"in batches with a sufficient batch size.") if task.num_prediction_examples > batch_size: num = math.ceil(task.num_prediction_examples / batch_size) logger.log(f"Splitting {task.num_prediction_examples:,} " f"entities into {num:,} batches of size " f"{batch_size:,}") predictions: list[pd.DataFrame] = [] summary: str | None = None details: Explanation | None = None for start in range(0, task.num_prediction_examples, batch_size): context = self._get_context( task=task.narrow_prediction(start, length=batch_size), run_mode=run_mode, num_neighbors=num_neighbors, exclude_cols_dict=exclude_cols_dict, top_k=top_k, ) context.y_test = None request = RFMPredictRequest( context=context, run_mode=RunMode(run_mode), query=task._query, use_prediction_time=use_prediction_time, ) with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='gencode') request_msg = request.to_protobuf() _bytes = request_msg.SerializeToString() if start == 0: logger.log(f"Generated context of size " f"{len(_bytes) / (1024*1024):.2f}MB") if len(_bytes) > _MAX_SIZE: stats = Context.get_memory_stats(request_msg.context) raise ValueError(_SIZE_LIMIT_MSG.format(stats=stats)) if start == 0 and task.num_prediction_examples > batch_size: num = math.ceil(task.num_prediction_examples / batch_size) verbose.init_progress(msg='Predicting', total=num) for attempt in range(self._num_retries + 1): try: if explain_config is not None: resp = self._api_client.explain( request=_bytes, skip_summary=explain_config.skip_summary, ) summary = resp.summary details = resp.details else: resp = self._api_client.predict(_bytes) df = pd.DataFrame(**resp.prediction) # Cast 'ENTITY' to correct data type: if 'ENTITY' in df: table_dict = context.subgraph.table_dict table = table_dict[context.entity_table_names[0]] ser = table.df[table.primary_key] df['ENTITY'] = df['ENTITY'].astype(ser.dtype) # Cast 'ANCHOR_TIMESTAMP' to correct data type: if 'ANCHOR_TIMESTAMP' in df: ser = df['ANCHOR_TIMESTAMP'] if not pd.api.types.is_datetime64_any_dtype(ser): if isinstance(ser.iloc[0], str): unit = None else: unit = 'ms' df['ANCHOR_TIMESTAMP'] = pd.to_datetime( ser, errors='coerce', unit=unit) predictions.append(df.reset_index(drop=True)) if task.num_prediction_examples > batch_size: verbose.step() break except HTTPException as e: if attempt == self._num_retries: try: msg = json.loads(e.detail)['detail'] except Exception: msg = e.detail raise RuntimeError( f"An unexpected exception occurred. Please " f"create an issue at " f"'https://github.com/kumo-ai/kumo-rfm'. {msg}" ) from None time.sleep(2**attempt) # 1s, 2s, 4s, 8s, ... if len(predictions) == 1: prediction = predictions[0] else: prediction = pd.concat(predictions, ignore_index=True) if explain_config is not None: assert len(predictions) == 1 assert summary is not None assert details is not None return Explanation( prediction=prediction, summary=summary, details=details, ) return prediction
[docs] def evaluate( self, query: str, *, metrics: list[str] | None = None, anchor_time: pd.Timestamp | Literal['entity'] | None = None, context_anchor_time: pd.Timestamp | None = None, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, max_pq_iterations: int = 10, random_seed: int | None = _RANDOM_SEED, verbose: bool | ProgressLogger = True, use_prediction_time: bool = False, ) -> pd.DataFrame: """Evaluates a predictive query. Args: query: The predictive query. metrics: The metrics to use. anchor_time: The anchor timestamp for the prediction. If set to ``None``, will use the maximum timestamp in the data. If set to ``"entity"``, will use the timestamp of the entity. context_anchor_time: The maximum anchor timestamp for context examples. If set to ``None``, ``anchor_time`` will determine the anchor time for context examples. run_mode: The :class:`RunMode` for the query. num_neighbors: The number of neighbors to sample for each hop. If specified, the ``num_hops`` option will be ignored. num_hops: The number of hops to sample when generating the context. max_pq_iterations: The maximum number of iterations to perform to collect valid labels. It is advised to increase the number of iterations in case the predictive query has strict entity filters, in which case, :class:`KumoRFM` needs to sample more entities to find valid labels. random_seed: A manual seed for generating pseudo-random numbers. verbose: Whether to print verbose output. use_prediction_time: Whether to use the anchor timestamp as an additional feature during prediction. This is typically beneficial for time series forecasting tasks. Returns: The metrics as a :class:`pandas.DataFrame` """ query_def = replace( self._parse_query(query), for_each='FOR EACH', rfm_entity_ids=None, ) if not isinstance(verbose, ProgressLogger): query_repr = query_def.to_string(rich=True, exclude_predict=True) msg = f'[bold]EVALUATE[/bold] {query_repr}' verbose = ProgressLogger.default(msg=msg, verbose=verbose) with verbose as logger: task_table = self._get_task_table( query=query_def, indices=None, anchor_time=anchor_time, context_anchor_time=context_anchor_time, run_mode=run_mode, max_pq_iterations=max_pq_iterations, random_seed=random_seed, logger=logger, ) return self.evaluate_task( task_table, metrics=metrics, run_mode=run_mode, num_neighbors=num_neighbors, num_hops=num_hops, verbose=verbose, exclude_cols_dict=query_def.get_exclude_cols_dict(), use_prediction_time=use_prediction_time, )
[docs] def evaluate_task( self, task: TaskTable, *, metrics: list[str] | None = None, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, num_hops: int = 2, verbose: bool | ProgressLogger = True, exclude_cols_dict: dict[str, list[str]] | None = None, use_prediction_time: bool = False, ) -> pd.DataFrame: """Evaluates a custom task specification. Args: task: The custom :class:`TaskTable`. metrics: The metrics to use. run_mode: The :class:`RunMode` for the query. num_neighbors: The number of neighbors to sample for each hop. If specified, the ``num_hops`` option will be ignored. num_hops: The number of hops to sample when generating the context. verbose: Whether to print verbose output. exclude_cols_dict: Any column in any table to exclude from the model input. use_prediction_time: Whether to use the anchor timestamp as an additional feature during prediction. This is typically beneficial for time series forecasting tasks. Returns: The metrics as a :class:`pandas.DataFrame` """ if num_hops != 2 and num_neighbors is not None: warnings.warn(f"Received custom 'num_neighbors' option; ignoring " f"custom 'num_hops={num_hops}' option") if num_neighbors is None: key = RunMode.FAST if task.task_type.is_link_pred else run_mode num_neighbors = _DEFAULT_NUM_NEIGHBORS[key][:num_hops] if metrics is not None and len(metrics) > 0: self._validate_metrics(metrics, task.task_type) metrics = list(dict.fromkeys(metrics)) if not isinstance(verbose, ProgressLogger): if task.task_type == TaskType.BINARY_CLASSIFICATION: task_type_repr = 'binary classification' elif task.task_type == TaskType.MULTICLASS_CLASSIFICATION: task_type_repr = 'multi-class classification' elif task.task_type == TaskType.REGRESSION: task_type_repr = 'regression' elif task.task_type == TaskType.TEMPORAL_LINK_PREDICTION: task_type_repr = 'link prediction' else: task_type_repr = str(task.task_type) msg = f"Evaluating {task_type_repr} task" verbose = ProgressLogger.default(msg=msg, verbose=verbose) with verbose as logger: if task.num_context_examples > _MAX_CONTEXT_SIZE[run_mode]: logger.log(f"Sub-sampled {_MAX_CONTEXT_SIZE[run_mode]:,} " f"out of {task.num_context_examples:,} in-context " f"examples") task = task.narrow_context(0, _MAX_CONTEXT_SIZE[run_mode]) if task.num_prediction_examples > _MAX_TEST_SIZE[task.task_type]: logger.log(f"Sub-sampled {_MAX_TEST_SIZE[task.task_type]:,} " f"out of {task.num_prediction_examples:,} test " f"examples") task = task.narrow_prediction( start=0, length=_MAX_TEST_SIZE[task.task_type], ) context = self._get_context( task=task, run_mode=run_mode, num_neighbors=num_neighbors, exclude_cols_dict=exclude_cols_dict, ) request = RFMEvaluateRequest( context=context, run_mode=RunMode(run_mode), metrics=metrics, use_prediction_time=use_prediction_time, ) with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='Protobuf gencode') request_msg = request.to_protobuf() request_bytes = request_msg.SerializeToString() logger.log(f"Generated context of size " f"{len(request_bytes) / (1024*1024):.2f}MB") if len(request_bytes) > _MAX_SIZE: stats_msg = Context.get_memory_stats(request_msg.context) raise ValueError(_SIZE_LIMIT_MSG.format(stats=stats_msg)) for attempt in range(self._num_retries + 1): try: resp = self._api_client.evaluate(request_bytes) break except HTTPException as e: if attempt == self._num_retries: try: msg = json.loads(e.detail)['detail'] except Exception: msg = e.detail raise RuntimeError( f"An unexpected exception occurred. Please create " f"an issue at " f"'https://github.com/kumo-ai/kumo-rfm'. {msg}" ) from None time.sleep(2**attempt) # 1s, 2s, 4s, 8s, ... return pd.DataFrame.from_dict( resp.metrics, orient='index', columns=['value'], ).reset_index(names='metric')
[docs] def get_train_table( self, query: str, size: int, *, anchor_time: pd.Timestamp | Literal['entity'] | None = None, random_seed: int | None = _RANDOM_SEED, max_iterations: int = 10, ) -> pd.DataFrame: """Returns the labels of a predictive query for a specified anchor time. Args: query: The predictive query. size: The maximum number of entities to generate labels for. anchor_time: The anchor timestamp for the query. If set to :obj:`None`, will use the maximum timestamp in the data. If set to :`"entity"`, will use the timestamp of the entity. random_seed: A manual seed for generating pseudo-random numbers. max_iterations: The number of steps to run before aborting. Returns: The labels as a :class:`pandas.DataFrame`. """ query_def = self._parse_query(query) if anchor_time is None: anchor_time = self._get_default_anchor_time(query_def) if query_def.target_ast.date_offset_range is not None: offset = query_def.target_ast.date_offset_range.end_date_offset offset *= query_def.num_forecasts anchor_time -= offset assert anchor_time is not None if isinstance(anchor_time, pd.Timestamp): self._validate_time(query_def, anchor_time, None, evaluate=True) else: assert anchor_time == 'entity' if query_def.entity_table not in self._sampler.time_column_dict: raise ValueError(f"Anchor time 'entity' requires the entity " f"table '{query_def.entity_table}' " f"to have a time column") train, test = self._sampler.sample_target( query=query_def, num_train_examples=0, train_anchor_time=anchor_time, num_train_trials=0, num_test_examples=size, test_anchor_time=anchor_time, num_test_trials=max_iterations * size, random_seed=random_seed, ) return pd.DataFrame({ 'ENTITY': test.entity_pkey, 'ANCHOR_TIMESTAMP': test.anchor_time, 'TARGET': test.target, })
# Helpers ################################################################# def _parse_query(self, query: str) -> ValidatedPredictiveQuery: if isinstance(query, ValidatedPredictiveQuery): return query if isinstance(query, str) and query.strip()[:9].lower() == 'evaluate ': raise ValueError("'EVALUATE PREDICT ...' queries are not " "supported in the SDK. Instead, use either " "`predict()` or `evaluate()` methods to perform " "predictions or evaluations.") request = RFMParseQueryRequest( query=query, graph_definition=self._graph_def, ) for attempt in range(self._num_retries + 1): try: resp = self._api_client.parse_query(request) break except HTTPException as e: if attempt == self._num_retries: try: msg = json.loads(e.detail)['detail'] except Exception: msg = e.detail raise ValueError(f"Failed to parse query '{query}'. {msg}") time.sleep(2**attempt) # 1s, 2s, 4s, 8s, ... if len(resp.validation_response.warnings) > 0: msg = '\n'.join([ f'{i+1}. {warning.title}: {warning.message}' for i, warning in enumerate(resp.validation_response.warnings) ]) warnings.warn(f"Encountered the following warnings during " f"parsing:\n{msg}") return resp.query @staticmethod def _get_task_type( query: ValidatedPredictiveQuery, edge_types: list[tuple[str, str, str]], ) -> TaskType: if isinstance(query.target_ast, (Condition, LogicalOperation)): return TaskType.BINARY_CLASSIFICATION target = query.target_ast if isinstance(target, Join): target = target.rhs_target if isinstance(target, Aggregation): if target.aggr == AggregationType.LIST_DISTINCT: table_name, col_name = target._get_target_column_name().split( '.') target_edge_types = [ edge_type for edge_type in edge_types if edge_type[0] == table_name and edge_type[1] == col_name ] if len(target_edge_types) != 1: raise NotImplementedError( f"Multilabel-classification queries based on " f"'LIST_DISTINCT' are not supported yet. If you " f"planned to write a link prediction query instead, " f"make sure to register '{col_name}' as a " f"foreign key.") return TaskType.TEMPORAL_LINK_PREDICTION return TaskType.REGRESSION assert isinstance(target, Column) if target.stype in {Stype.ID, Stype.categorical}: return TaskType.MULTICLASS_CLASSIFICATION if target.stype in {Stype.numerical}: return TaskType.REGRESSION raise NotImplementedError("Task type not yet supported") def _get_default_anchor_time( self, query: ValidatedPredictiveQuery | None = None, ) -> pd.Timestamp: if query is not None and query.query_type == QueryType.TEMPORAL: aggr_table_names = [ aggr._get_target_column_name().split('.')[0] for aggr in query.get_all_target_aggregations() ] return self._sampler.get_max_time(aggr_table_names) return self._sampler.get_max_time() def _validate_time( self, query: ValidatedPredictiveQuery, anchor_time: pd.Timestamp, context_anchor_time: pd.Timestamp | None, evaluate: bool, ) -> None: if len(self._sampler.time_column_dict) == 0: return # Graph without timestamps if query.query_type == QueryType.TEMPORAL: aggr_table_names = [ aggr._get_target_column_name().split('.')[0] for aggr in query.get_all_target_aggregations() ] min_time = self._sampler.get_min_time(aggr_table_names) max_time = self._sampler.get_max_time(aggr_table_names) else: min_time = self._sampler.get_min_time() max_time = self._sampler.get_max_time() if anchor_time < min_time: raise ValueError(f"Anchor timestamp '{anchor_time}' is before " f"the earliest timestamp '{min_time}' in the " f"data.") if context_anchor_time is not None and context_anchor_time < min_time: raise ValueError(f"Context anchor timestamp is too early or " f"aggregation time range is too large. To make " f"this prediction, we would need data back to " f"'{context_anchor_time}', however, your data " f"only contains data back to '{min_time}'.") if query.target_ast.date_offset_range is not None: end_offset = query.target_ast.date_offset_range.end_date_offset else: end_offset = pd.DateOffset(0) end_offset = end_offset * query.num_forecasts if (context_anchor_time is not None and context_anchor_time > anchor_time): warnings.warn(f"Context anchor timestamp " f"(got '{context_anchor_time}') is set to a later " f"date than the prediction anchor timestamp " f"(got '{anchor_time}'). Please make sure this is " f"intended.") elif (query.query_type == QueryType.TEMPORAL and context_anchor_time is not None and context_anchor_time + end_offset > anchor_time): warnings.warn(f"Aggregation for context examples at timestamp " f"'{context_anchor_time}' will leak information " f"from the prediction anchor timestamp " f"'{anchor_time}'. Please make sure this is " f"intended.") elif (context_anchor_time is not None and context_anchor_time - end_offset < min_time): _time = context_anchor_time - end_offset warnings.warn(f"Context anchor timestamp is too early or " f"aggregation time range is too large. To form " f"proper input data, we would need data back to " f"'{_time}', however, your data only contains " f"data back to '{min_time}'.") if not evaluate and anchor_time > max_time + pd.DateOffset(days=1): warnings.warn(f"Anchor timestamp '{anchor_time}' is after the " f"latest timestamp '{max_time}' in the data. Please " f"make sure this is intended.") if evaluate and anchor_time > max_time - end_offset: raise ValueError( f"Anchor timestamp for evaluation is after the latest " f"supported timestamp '{max_time - end_offset}'.") def _get_task_table( self, query: ValidatedPredictiveQuery, indices: list[str] | list[float] | list[int] | None, anchor_time: pd.Timestamp | Literal['entity'] | None = None, context_anchor_time: pd.Timestamp | None = None, run_mode: RunMode = RunMode.FAST, max_pq_iterations: int = 10, random_seed: int | None = _RANDOM_SEED, logger: ProgressLogger | None = None, ) -> TaskTable: task_type = self._get_task_type( query=query, edge_types=self._sampler.edge_types, ) num_train_examples = _MAX_CONTEXT_SIZE[run_mode] num_test_examples = _MAX_TEST_SIZE[task_type] if indices is None else 0 if logger is not None: if task_type == TaskType.BINARY_CLASSIFICATION: task_type_repr = 'binary classification' elif task_type == TaskType.MULTICLASS_CLASSIFICATION: task_type_repr = 'multi-class classification' elif task_type == TaskType.REGRESSION: task_type_repr = 'regression' elif task_type == TaskType.TEMPORAL_LINK_PREDICTION: task_type_repr = 'link prediction' else: task_type_repr = str(task_type) logger.log(f"Identified {query.query_type} {task_type_repr} task") if query.target_ast.date_offset_range is None: step_offset = pd.DateOffset(0) else: step_offset = query.target_ast.date_offset_range.end_date_offset end_offset = step_offset * query.num_forecasts if anchor_time is None: anchor_time = self._get_default_anchor_time(query) if num_test_examples > 0: anchor_time = anchor_time - end_offset if logger is not None: assert isinstance(anchor_time, pd.Timestamp) if anchor_time == pd.Timestamp.min: pass # Static graph elif (anchor_time.hour == 0 and anchor_time.minute == 0 and anchor_time.second == 0 and anchor_time.microsecond == 0): logger.log(f"Derived anchor time {anchor_time.date()}") else: logger.log(f"Derived anchor time {anchor_time}") if isinstance(anchor_time, pd.Timestamp): if context_anchor_time == 'entity': raise ValueError("Anchor time 'entity' needs to be shared " "for context and prediction examples") if context_anchor_time is None: context_anchor_time = anchor_time - end_offset self._validate_time(query, anchor_time, context_anchor_time, evaluate=num_test_examples > 0) else: assert anchor_time == 'entity' if query.query_type != QueryType.STATIC: raise ValueError("Anchor time 'entity' is only valid for " "static predictive queries") if query.entity_table not in self._sampler.time_column_dict: raise ValueError(f"Anchor time 'entity' requires the entity " f"table '{query.entity_table}' to " f"have a time column") if isinstance(context_anchor_time, pd.Timestamp): raise ValueError("Anchor time 'entity' needs to be shared " "for context and prediction examples") context_anchor_time = 'entity' train, test = self._sampler.sample_target( query=query, num_train_examples=num_train_examples, train_anchor_time=context_anchor_time, num_train_trials=max_pq_iterations * num_train_examples, num_test_examples=num_test_examples, test_anchor_time=anchor_time, num_test_trials=max_pq_iterations * num_test_examples, random_seed=random_seed, ) train_pkey, train_time, train_y = train test_pkey, test_time, test_y = test if num_test_examples > 0 and logger is not None: if task_type == TaskType.BINARY_CLASSIFICATION: pos = 100 * int((test_y > 0).sum()) / len(test_y) msg = (f"Collected {len(test_y):,} test examples with " f"{pos:.2f}% positive cases") elif task_type == TaskType.MULTICLASS_CLASSIFICATION: msg = (f"Collected {len(test_y):,} test examples holding " f"{test_y.nunique()} classes") elif task_type == TaskType.REGRESSION: _min, _max = float(test_y.min()), float(test_y.max()) msg = (f"Collected {len(test_y):,} test examples with targets " f"between {format_value(_min)} and " f"{format_value(_max)}") elif task_type == TaskType.TEMPORAL_LINK_PREDICTION: num_rhs = test_y.explode().nunique() msg = (f"Collected {len(test_y):,} test examples with " f"{num_rhs:,} unique items") else: raise NotImplementedError logger.log(msg) if num_test_examples == 0: assert indices is not None test_pkey = pd.Series(indices, dtype=train_pkey.dtype) if isinstance(anchor_time, pd.Timestamp): test_time = pd.Series([anchor_time]).repeat( len(indices)).reset_index(drop=True) else: train_time = test_time = 'entity' if logger is not None: if task_type == TaskType.BINARY_CLASSIFICATION: pos = 100 * int((train_y > 0).sum()) / len(train_y) msg = (f"Collected {len(train_y):,} in-context examples with " f"{pos:.2f}% positive cases") elif task_type == TaskType.MULTICLASS_CLASSIFICATION: msg = (f"Collected {len(train_y):,} in-context examples " f"holding {train_y.nunique()} classes") elif task_type == TaskType.REGRESSION: _min, _max = float(train_y.min()), float(train_y.max()) msg = (f"Collected {len(train_y):,} in-context examples with " f"targets between {format_value(_min)} and " f"{format_value(_max)}") elif task_type == TaskType.TEMPORAL_LINK_PREDICTION: num_rhs = train_y.explode().nunique() msg = (f"Collected {len(train_y):,} in-context examples with " f"{num_rhs:,} unique items") else: raise NotImplementedError logger.log(msg) entity_table_names: tuple[str] | tuple[str, str] if task_type.is_link_pred: final_aggr = query.get_final_target_aggregation() assert final_aggr is not None edge_fkey = final_aggr._get_target_column_name() for edge_type in self._sampler.edge_types: if edge_fkey == f'{edge_type[0]}.{edge_type[1]}': entity_table_names = ( query.entity_table, edge_type[2], ) else: entity_table_names = (query.entity_table, ) context_df = pd.DataFrame({'ENTITY': train_pkey, 'TARGET': train_y}) if isinstance(train_time, pd.Series): context_df['ANCHOR_TIMESTAMP'] = train_time pred_df = pd.DataFrame({'ENTITY': test_pkey}) if num_test_examples > 0: pred_df['TARGET'] = test_y if isinstance(test_time, pd.Series): pred_df['ANCHOR_TIMESTAMP'] = test_time return TaskTable( task_type=task_type, context_df=context_df, pred_df=pred_df, entity_table_name=entity_table_names, entity_column='ENTITY', target_column='TARGET', time_column='ANCHOR_TIMESTAMP' if isinstance( train_time, pd.Series) else TaskTable.ENTITY_TIME, ) def _get_context( self, task: TaskTable, run_mode: RunMode | str = RunMode.FAST, num_neighbors: list[int] | None = None, exclude_cols_dict: dict[str, list[str]] | None = None, top_k: int | None = None, ) -> Context: if num_neighbors is None: key = RunMode.FAST if task.task_type.is_link_pred else run_mode num_neighbors = _DEFAULT_NUM_NEIGHBORS[key][:2] if len(num_neighbors) > 6: raise ValueError(f"Cannot predict on subgraphs with more than 6 " f"hops (got {len(num_neighbors)}). Reduce the " f"number of hops and try again. Please create a " f"feature request at " f"'https://github.com/kumo-ai/kumo-rfm' if you " f"must go beyond this for your use-case.") # Exclude the entity anchor time from the feature set to prevent # running out-of-distribution between in-context and test examples: exclude_cols_dict = exclude_cols_dict or {} if task.entity_table_name in self._sampler.time_column_dict: if task.entity_table_name not in exclude_cols_dict: exclude_cols_dict[task.entity_table_name] = [] time_col = self._sampler.time_column_dict[task.entity_table_name] exclude_cols_dict[task.entity_table_name].append(time_col) entity_pkey = pd.concat([ task._context_df[task._entity_column], task._pred_df[task._entity_column], ], axis=0, ignore_index=True) if task.use_entity_time: if task.entity_table_name not in self._sampler.time_column_dict: raise ValueError(f"The given annchor time requires the entity " f"table '{task.entity_table_name}' to have a " f"time column") anchor_time = 'entity' elif task._time_column is not None: anchor_time = pd.concat([ task._context_df[task._time_column], task._pred_df[task._time_column], ], axis=0, ignore_index=True) else: anchor_time = pd.Series(self._get_default_anchor_time()).repeat( (len(entity_pkey))).reset_index(drop=True) subgraph = self._sampler.sample_subgraph( entity_table_names=task.entity_table_names, entity_pkey=entity_pkey, anchor_time=anchor_time, num_neighbors=num_neighbors, exclude_cols_dict=exclude_cols_dict, ) if len(subgraph.table_dict) >= 15: raise ValueError(f"Cannot query from a graph with more than 15 " f"tables (got {len(subgraph.table_dict)}). " f"Please create a feature request at " f"'https://github.com/kumo-ai/kumo-rfm' if you " f"must go beyond this for your use-case.") if (task.task_type.is_link_pred and task.entity_table_names[-1] not in subgraph.table_dict): raise ValueError("Cannot perform link prediction on subgraphs " "without any historical target entities. Please " "increase the number of hops and try again.") return Context( task_type=task.task_type, entity_table_names=task.entity_table_names, subgraph=subgraph, y_train=task._context_df[task.target_column.name], y_test=task._pred_df[task.target_column.name] if task.evaluate else None, top_k=top_k, step_size=None, ) @staticmethod def _validate_metrics( metrics: list[str], task_type: TaskType, ) -> None: if task_type == TaskType.BINARY_CLASSIFICATION: supported_metrics = [ 'acc', 'precision', 'recall', 'f1', 'auroc', 'auprc', 'ap' ] elif task_type == TaskType.MULTICLASS_CLASSIFICATION: supported_metrics = ['acc', 'precision', 'recall', 'f1', 'mrr'] elif task_type == TaskType.REGRESSION: supported_metrics = ['mae', 'mape', 'mse', 'rmse', 'smape', 'r2'] elif task_type == TaskType.TEMPORAL_LINK_PREDICTION: supported_metrics = [ 'map@', 'ndcg@', 'mrr@', 'precision@', 'recall@', 'f1@', 'hit_ratio@' ] else: raise NotImplementedError for metric in metrics: if '@' in metric: metric_split = metric.split('@') if len(metric_split) != 2: raise ValueError(f"Unsupported metric '{metric}'. " f"Available metrics " f"are {supported_metrics}.") name, top_k = f'{metric_split[0]}@', metric_split[1] if not top_k.isdigit(): raise ValueError(f"Metric '{metric}' does not define a " f"valid 'top_k' value (got '{top_k}').") if int(top_k) <= 0: raise ValueError(f"Metric '{metric}' needs to define a " f"positive 'top_k' value (got '{top_k}')") if int(top_k) > 100: raise ValueError(f"Metric '{metric}' defines a 'top_k' " f"value greater than 100 " f"(got '{top_k}'). Please create a " f"feature request at " f"'https://github.com/kumo-ai/kumo-rfm' " f"if you must go beyond this for your " f"use-case.") metric = name if metric not in supported_metrics: raise ValueError(f"Unsupported metric '{metric}'. Available " f"metrics are {supported_metrics}. If you " f"feel a metric is missing, please create a " f"feature request at " f"'https://github.com/kumo-ai/kumo-rfm'.")
def format_value(value: int | float) -> str: if value == int(value): return f'{int(value):,}' if abs(value) >= 1000: return f'{value:,.0f}' if abs(value) >= 10: return f'{value:.1f}' return f'{value:.2f}'